模型和能带, 学术

双层石墨烯哈密顿量与能带图(附Python代码)

双层石墨烯哈密顿量主要参考这篇文献:Localized States at Zigzag Edges of Bilayer Graphene

在实空间中,双层石墨烯哈密顿量写为

当y方向受限,宽度为N,x方向傅里叶变换后,得到(文献中给出的表达式):

可以改写为矩阵形式(略去矩阵前后的基矢),这里是以N=3为例:

 H=\begin{pmatrix} H_{00} & H_{01} & 0\\ H_{01}^{\dagger} & H_{00} & H_{01}\\0  & H_{01}^{\dagger} & H_{00}\end{pmatrix}

H_{00}=\begin{pmatrix}0 & -t(1+e^{ika}) & 0  & -t_0\\-t^{*}(1+e^{-ika}) & 0 & 0  & 0\\0 & 0 & 0   & -t(1+e^{ika}) \\-t_0^{*} & 0 & -t^{*}(1+e^{-ika}) & 0\end{pmatrix}

H_{01}=\begin{pmatrix}0 & 0 & 0 &0 \\-t^{*}& 0 & 0 & 0\\0 & 0 & 0 &  0\\0 & 0 & -t^{*}& 0\end{pmatrix}

手稿为(这里也略去矩阵前后的基矢,但标出了对应的基矢的位置):

以上这种形式,对应的编号如下图所示(这里是以N=5为例 )。

代码为:

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/4322
"""

import numpy as np
import matplotlib.pyplot as plt
from math import * 
import cmath 
import functools


def hamiltonian(k, N):  
    # 初始化为零矩阵
    h = np.zeros((4*N, 4*N), dtype=complex)

    t=1
    a=1
    t0=0.2   # 层间跃迁
    V=0.2    # 层间的势能差为2V

    for i in range(N):
        h[i*4+0, i*4+0] = V
        h[i*4+1, i*4+1] = V
        h[i*4+2, i*4+2] = -V
        h[i*4+3, i*4+3] = -V

        h[i*4+0, i*4+1] = -t*(1+cmath.exp(1j*k*a))
        h[i*4+1, i*4+0] = -t*(1+cmath.exp(-1j*k*a))
        h[i*4+2, i*4+3] = -t*(1+cmath.exp(1j*k*a))
        h[i*4+3, i*4+2] = -t*(1+cmath.exp(-1j*k*a))

        h[i*4+0, i*4+3] = -t0
        h[i*4+3, i*4+0] = -t0

    for i in range(N-1):
        # 最近邻
        h[i*4+1, (i+1)*4+0] = -t
        h[(i+1)*4+0, i*4+1] = -t

        h[i*4+3, (i+1)*4+2] = -t
        h[(i+1)*4+2, i*4+3] = -t
    return h


def main():
    hamiltonian0 = functools.partial(hamiltonian, N=100)
    k = np.linspace(-pi, pi, 400)
    plot_bands_one_dimension(k, hamiltonian0)


def plot_bands_one_dimension(k, hamiltonian):
    dim = hamiltonian(0).shape[0]
    dim_k = k.shape[0]
    eigenvalue_k = np.zeros((dim_k, dim))
    i0 = 0
    for k0 in k:
        matrix0 = hamiltonian(k0)
        eigenvalue, eigenvector = np.linalg.eig(matrix0)
        eigenvalue_k[i0, :] = np.sort(np.real(eigenvalue[:]))
        i0 += 1
        print(k0)
    for dim0 in range(dim):
        plt.plot(k, eigenvalue_k[:, dim0], '-k')
    plt.show()


if __name__ == '__main__':
    main()

计算结果为:

此外,也可以按照层的顺序依次编号,如下图所示(编号顺序不影响计算的结果):

这时的代码写为:

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/4322
"""

import numpy as np
import matplotlib.pyplot as plt
from math import * 
import cmath 
import functools 


def hamiltonian(k, N):  
    # 初始化为零矩阵
    h = np.zeros((4*N, 4*N), dtype=complex)
    h11 = np.zeros((4*N, 4*N), dtype=complex)  # 元胞内
    h12 = np.zeros((4*N, 4*N), dtype=complex)  # 元胞间

    t=1
    a=1
    t0=0.2   # 层间跃迁
    V=0.2    # 层间的势能差为2V

    for i in range(N):
        h11[i*2+0, i*2+0] = V
        h11[i*2+1, i*2+1] = V


        h11[N*2+i*2+0, N*2+i*2+0] = -V
        h11[N*2+i*2+1, N*2+i*2+1] = -V


        h11[i*2+0, i*2+1] = -t 
        h11[i*2+1, i*2+0] = -t


        h11[N*2+i*2+0, N*2+i*2+1] = -t
        h11[N*2+i*2+1, N*2+i*2+0] = -t

        h11[i*2+0, N*2+i*2+1] = -t0
        h11[N*2+i*2+1, i*2+0] = -t0


    for i in range(N-1):
        h11[i*2+1, (i+1)*2+0] = -t 
        h11[(i+1)*2+0, i*2+1] = -t

        h11[N*2+i*2+1, N*2+(i+1)*2+0] = -t
        h11[N*2+(i+1)*2+0, N*2+i*2+1] = -t


    for i in range(N):
        h12[i*2+0, i*2+1] = -t
        h12[N*2+i*2+0, N*2+i*2+1] = -t

    h= h11 + h12*cmath.exp(-1j*k*a) + h12.transpose().conj()*cmath.exp(1j*k*a)    
    return h


def main():
    hamiltonian0 = functools.partial(hamiltonian, N=100) 
    k = np.linspace(-pi, pi, 400)
    plot_bands_one_dimension(k, hamiltonian0)


def plot_bands_one_dimension(k, hamiltonian):
    dim = hamiltonian(0).shape[0]
    dim_k = k.shape[0]
    eigenvalue_k = np.zeros((dim_k, dim))
    i0 = 0
    for k0 in k:
        matrix0 = hamiltonian(k0)
        eigenvalue, eigenvector = np.linalg.eig(matrix0)
        eigenvalue_k[i0, :] = np.sort(np.real(eigenvalue[:]))
        i0 += 1
        print(k0)
    for dim0 in range(dim):
        plt.plot(k, eigenvalue_k[:, dim0], '-k') 
    plt.show()


if __name__ == '__main__':
    main()

计算得到的能带和之前编号的结果的相同。

关于单层石墨烯,可阅读这篇:石墨烯哈密顿量与能带图(附Python代码)

8,747 次浏览

【说明:本站主要是个人的一些笔记和代码分享,内容可能会不定期修改。为了使全网显示的始终是最新版本,这里的文章未经同意请勿转载。引用请注明出处:https://www.guanjihuan.com

17 thoughts on “双层石墨烯哈密顿量与能带图(附Python代码)”

        1. 嗯,元胞内部有的跃迁,元胞间也有。但层间跃迁是否需要次近邻还不确定,要看具体怎么近似了。

  1. 您好,我想请教一下关于二维系统一边是开放边界的时候,Hamiltonian要怎么写,以及code上如何实现,或者请问有什么参考的学习资料么,现在处在搜索都不知道如何下手的阶段。

  2. 你好,请问从哈密顿量写成矩阵形式这步有什么书或者参考文献可以看的吗?

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

Captcha Code