拓扑不变量, 学术

贝里曲率的计算(附Python代码)

这是之前的一篇:空间反演对称性破缺的石墨烯的贝里曲率分布(附Python代码),因为用到定义公式,需要对波函数求导,所以在计算时通常要寻找固定的规范,使得不同k点的波函数具有连续性。

本篇将分别用以下这三篇中的方法计算贝里曲率(本篇程序没有最后的求和):

用到的哈密顿量例子同样是空间反演对称性破缺的石墨烯。计算结果和这篇相同:空间反演对称性破缺的石墨烯的贝里曲率分布(附Python代码)

如果需要代码写成函数的形式,可以阅读:贝里曲率的计算(写成函数形式,附Python代码)

一、贝里曲率高效法

这个方法的最后需要除以delta*delta的面积,参考[1]:

根据贝里曲率的定义,还需要额外乘一个虚数才可以得到贝里曲率。

Python代码如下:

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/20869
"""

import numpy as np
import matplotlib.pyplot as plt
from math import *  
import cmath


def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)):  # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
    h = np.zeros((2, 2), dtype=complex)
    h[0, 0] = 0.28/2
    h[1, 1] = -0.28/2
    h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
    h[0, 1] = h[1, 0].conj()
    return h


def main():
    n = 2000  # 取点密度
    delta = 4*pi/n  # 求导的偏离量
    for band in range(2):
        F_all = []  # 贝里曲率
        for kx in np.linspace(-2*pi, 2*pi, n):
            for ky in [0]: # 这里只考虑ky=0对称轴上的情况
                H = hamiltonian(kx, ky)
                eigenvalue, eigenvector = np.linalg.eig(H)
                vector = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]  # 价带波函数
            
                H_delta_kx = hamiltonian(kx+delta, ky) 
                eigenvalue, eigenvector = np.linalg.eig(H_delta_kx)
                vector_delta_kx = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]   # 略偏离kx的波函数

                H_delta_ky = hamiltonian(kx, ky+delta)  
                eigenvalue, eigenvector = np.linalg.eig(H_delta_ky)
                vector_delta_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]  # 略偏离ky的波函数
                
                H_delta_kx_ky = hamiltonian(kx+delta, ky+delta)  
                eigenvalue, eigenvector = np.linalg.eig(H_delta_kx_ky)
                vector_delta_kx_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]  # 略偏离kx和ky的波函数
                
                Ux = np.dot(np.conj(vector), vector_delta_kx)/abs(np.dot(np.conj(vector), vector_delta_kx))
                Uy = np.dot(np.conj(vector), vector_delta_ky)/abs(np.dot(np.conj(vector), vector_delta_ky))
                Ux_y = np.dot(np.conj(vector_delta_ky), vector_delta_kx_ky)/abs(np.dot(np.conj(vector_delta_ky), vector_delta_kx_ky))
                Uy_x = np.dot(np.conj(vector_delta_kx), vector_delta_kx_ky)/abs(np.dot(np.conj(vector_delta_kx), vector_delta_kx_ky))

                F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j

                F_all = np.append(F_all,[F], axis=0) 
        plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
        plt.xlabel('k_x (pi)')
        plt.ylabel('Berry curvature')
        if band==0:
            plt.title('Valence Band')
        else:
            plt.title('Conductance Band')
        plt.show()


if __name__ == '__main__':
    main()

二、贝里曲率Wilson loop方法

Wilson loop方法和高效法在表达式上其实差别不大:在Wilson loop方法中没有除以模,但需要对路径上的点多次乘积。

Python代码如下:

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/20869
"""

import numpy as np
import matplotlib.pyplot as plt
from math import *  
import cmath


def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)):  # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
    h = np.zeros((2, 2), dtype=complex)
    h[0, 0] = 0.28/2
    h[1, 1] = -0.28/2
    h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
    h[0, 1] = h[1, 0].conj()
    return h


def main():
    n1 = 1000 # small plaquettes精度
    n2 = 10 # Wilson loop精度
    delta = 2*pi/n1
    for band in range(2):
        F_all = []  # 贝里曲率
        for kx in np.linspace(-2*pi, 2*pi, n1):
            for ky in [0]: # 这里只考虑ky=0对称轴上的情况
                vector_array = []
                # line_1
                for i2 in range(n2+1):
                    H_delta = hamiltonian(kx+delta/n2*i2, ky) 
                    eigenvalue, eigenvector = np.linalg.eig(H_delta)
                    vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]
                    vector_array.append(vector_delta)
                # line_2
                for i2 in range(n2):
                    H_delta = hamiltonian(kx+delta, ky+delta/n2*(i2+1))  
                    eigenvalue, eigenvector = np.linalg.eig(H_delta)
                    vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]
                    vector_array.append(vector_delta)
                # line_3
                for i2 in range(n2):
                    H_delta = hamiltonian(kx+delta-delta/n2*(i2+1), ky+delta)  
                    eigenvalue, eigenvector = np.linalg.eig(H_delta)
                    vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]
                    vector_array.append(vector_delta)
                # line_4
                for i2 in range(n2-1):
                    H_delta = hamiltonian(kx, ky+delta-delta/n2*(i2+1))  
                    eigenvalue, eigenvector = np.linalg.eig(H_delta)
                    vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))[band]]
                    vector_array.append(vector_delta)
                Wilson_loop = 1
                for i0 in range(len(vector_array)-1):
                    Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
                Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
                arg = np.log(Wilson_loop)/delta/delta*1j

                F_all = np.append(F_all,[arg], axis=0) 
        plt.plot(np.linspace(-2*pi, 2*pi, n1)/pi, np.real(F_all))
        plt.xlabel('k_x (pi)')
        plt.ylabel('Berry curvature')
        if band==0:
            plt.title('Valence Band')
        else:
            plt.title('Conductance Band')
        plt.show()


if __name__ == '__main__':
    main()

三、贝里曲率Kubo公式

这里按理说需要对所有其他能带求和,但因为考虑的是两带系统,所以没有求和的过程。

Python代码如下:

"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/20869
"""

import numpy as np
import matplotlib.pyplot as plt
from math import *  
import cmath


def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)):  # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
    h = np.zeros((2, 2), dtype=complex)
    h[0, 0] = 0.28/2
    h[1, 1] = -0.28/2
    h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
    h[0, 1] = h[1, 0].conj()
    return h


def main():
    n = 2000  # 取点密度
    delta = 1e-9  # 求导的偏离量
    for band in range(2):
        F_all = []  # 贝里曲率
        for kx in np.linspace(-2*pi, 2*pi, n):
            for ky in [0]: # 这里只考虑ky=0对称轴上的情况
                H = hamiltonian(kx, ky)
                eigenvalue, eigenvector = np.linalg.eig(H)
                if band==0:
                    vector_0 = eigenvector[:, np.argsort(np.real(eigenvalue))[0]]
                    vector_1 = eigenvector[:, np.argsort(np.real(eigenvalue))[1]]
                elif band==1:
                    vector_0 = eigenvector[:, np.argsort(np.real(eigenvalue))[1]]
                    vector_1 = eigenvector[:, np.argsort(np.real(eigenvalue))[0]]
                eigenvalue = np.sort(np.real(eigenvalue))

                H_delta_kx = hamiltonian(kx+delta, ky)-hamiltonian(kx, ky) 
                H_delta_ky = hamiltonian(kx, ky+delta)-hamiltonian(kx, ky)

                berry_curvature = 1j*(np.dot(np.dot(np.dot(np.dot(np.dot(vector_0.transpose().conj(), H_delta_kx/delta), vector_1), vector_1.transpose().conj()), H_delta_ky/delta), vector_0)- np.dot(np.dot(np.dot(np.dot(np.dot(vector_0.transpose().conj(), H_delta_ky/delta), vector_1), vector_1.transpose().conj()), H_delta_kx/delta), vector_0))/(eigenvalue[0]-eigenvalue[1])**2

                F_all = np.append(F_all,[berry_curvature], axis=0) 
        plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
        plt.xlabel('k_x (pi)')
        plt.ylabel('Berry curvature')
        if band==0:
            plt.title('Valence Band')
        else:
            plt.title('Conductance Band')
        plt.show()


if __name__ == '__main__':
    main()

参考文献:

[1] Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances

4,414 次浏览

【说明:本站主要是个人的一些笔记和代码分享,内容可能会不定期修改。为了使全网显示的始终是最新版本,这里的文章未经同意请勿转载。引用请注明出处:https://www.guanjihuan.com

12 thoughts on “贝里曲率的计算(附Python代码)”

  1. guan老师您好,我通过wien2k进行了scf计算,之后用xcrysden选择了自己想要的kpath算出了E(k)能带图,想用Kubo公式进行Berry Curv计算,不太清楚老师的这个代码该怎么用呢?

    1. 我目前没用过这个软件,不大熟悉。如果要计算Berry Curv,需要系统的波函数信息,而不是能带,看这个软件是否有提供波函数,然后按照公式计算就行了。

      1. 谢谢guan老师回答,我也是小白,这个软件提供eigenvalue加eigenvector的信息,但是这个文件好像是二进制的.....

  2. guan老师,我没有学过python,但是根据其他语言多少可以看得懂您的程序,我想请问一下哈密顿量里面的k1和k2代表什么?

    1. 动量k_x或k_y。因为不同地方x和y方向的定义不一样,容易搞混,所以我这里用k1和k2代替,可以是kx和ky,也可以是ky和kx。

  3. 您好,我能理解其中的Wilson loop方法,但无法理解高效法,您说两者比较相似,能不能请您解释一下后者?

  4. 您好,请问一下在Wilson loop方法中,对于每一个kx计算arg时,公式arg=np.log(Wilson_loop)/delta/delta*1j中为什么除了两个delta呢?

  5. 你好,计算小白,我想问如何构造其他物质的哈密顿量?要知道什么参数

    1. 一般是要从第一性原理计算出发,通过近似或者群论化简,得到维度相对比较低的紧束缚哈密顿量或KP哈密顿量,以及对应的参数。

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

Captcha Code