施密特正交化(Schmidt orthogonalization)过程[1]:
Python代码:
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/10890
"""
import numpy as np
def main():
A = np.array([[0, 1, 1, -1], [1, 0, -1, 1], [1, -1, 0, 1], [-1, 1, 1, 0]])
eigenvalue, eigenvector = np.linalg.eig(A)
print('矩阵:\n', A)
print('特征值:\n', eigenvalue)
print('特征向量:\n', eigenvector)
print('\n判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
print('判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
print('对角化验证:')
print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
# 施密斯正交化
eigenvector = Schmidt_orthogonalization(eigenvector)
print('\n施密斯正交化后,特征向量:\n', eigenvector)
print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
print('施密斯正交化后,对角化验证:')
print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
def Schmidt_orthogonalization(eigenvector):
num = eigenvector.shape[1]
for i in range(num):
for i0 in range(i):
eigenvector[:, i] = eigenvector[:, i] - eigenvector[:, i0]*np.dot(eigenvector[:, i].transpose().conj(), eigenvector[:, i0])/(np.dot(eigenvector[:, i0].transpose().conj(),eigenvector[:, i0]))
eigenvector[:, i] = eigenvector[:, i]/np.linalg.norm(eigenvector[:, i])
return eigenvector
if __name__ == '__main__':
main()
运行结果:
参考资料:
[1] 截图自北京科技大学廖福成老师的”高等代数与解析几何“课件
[2] ”高等代数与解析几何“、”线性代数“、”高等数学“等相关教材
【说明:本站主要是个人的一些笔记和代码分享,内容可能会不定期修改。为了使全网显示的始终是最新版本,这里的文章未经同意请勿转载。引用请注明出处:https://www.guanjihuan.com】