以下是笔记本电脑的类型讨论,供选择参考:
月度归档: 2024 年 4 月
反向传播、自动微分、链式法则、梯度下降的关系
链式法则为计算复合函数的导数提供了理论基础,自动微分提供了高效计算导数的技术手段,反向传播利用了这两者来计算神… Continue reading 反向传播、自动微分、链式法则、梯度下降的关系
使用torchviz实现PyTorch计算图的可视化
本篇使用 torchviz 软件包实现 PyTorch 计算图的可视化,做个记录,但个人感觉可视化的作用不是很… Continue reading 使用torchviz实现PyTorch计算图的可视化
机器学习中动态图和静态图的区别
TensorFlow 的早期版本 TensorFlow 1.x 是静态图,在搭建完结构后,需要创建会话(Ses… Continue reading 机器学习中动态图和静态图的区别
最大池化和平均池化的区别
池化一般有最大池化和平均池化。池化通过丢弃信息来降低维度。从字面上就很容易理解: 相关博文:
文献关联的搜索方法
文献关联除了直接看论文的参考文献和之后引用该篇论文的文献,也使用文献关联工具,看文献的相似性和引用率等信息会更… Continue reading 文献关联的搜索方法
关于 Adiabatic 绝热的意思
Adiabatic 可翻译成“绝热”,也可扩展翻译成“寖渐/浸渐”,意思包含了“无限缓慢”、“可逆的”、“准静… Continue reading 关于 Adiabatic 绝热的意思
科学计算中进程并行和线程并行的区别
在 Python 计算中有进程并行和线程并行,本篇给出进程并行和线程并行的区别,并做了一些讨论。 相关博文:
Python中time.perf_counter()和time.time()的区别
在具体应用时,如果对精度要求不高的话,time.perf_counter() 和 time.time() 两者… Continue reading Python中time.perf_counter()和time.time()的区别
迭代和递归的区别
迭代(iteration)和递归(recursion)都是循环的过程。迭代是在循环体内重复调用另外一个函数或代… Continue reading 迭代和递归的区别
一个完整的卷积神经网络(无训练)
这是之前的两篇: 这里给出一个完整的卷积神经网络,包含两个卷积层和两个全连接层。只是做了正向传播,并没有使用数… Continue reading 一个完整的卷积神经网络(无训练)
卷积和池化后的数据维度
这是之前的一篇:卷积和池化的作用以及代码实现。 在卷积和池化后,通常需要和全连接的神经网络进行连接,为了能够匹… Continue reading 卷积和池化后的数据维度
卷积和池化的作用以及代码实现
卷积(convolution)和池化(pooling)是卷积神经网络(convolutional neural… Continue reading 卷积和池化的作用以及代码实现
主成分分析PCA的原理以及降维实现
主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维方法。主要… Continue reading 主成分分析PCA的原理以及降维实现